Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Transbound Emerg Dis ; 69(5): e1734-e1748, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2052999

ABSTRACT

Equine influenza virus (EIV) is a highly contagious pathogen of equids, and a well-known burden in global equine health. EIV H3N8 variants seasonally emerged and resulted in EIV outbreaks in the United States and worldwide. The present study evaluated the pattern of cross-regional EIV H3N8 spread and evolutionary characteristics at US and global scales using Bayesian phylogeography with balanced subsampling based on regional horse population size. A total of 297 haemagglutinin (HA) sequences of global EIV H3N8 were collected from 1963 to 2019 and subsampled to global subset (n = 67), raw US sequences (n = 100) and US subset (n = 44) datasets. Discrete trait phylogeography analysis was used to estimate the transmission history of EIV using four global and US genome datasets. The North American lineage was the major source of globally dominant EIV variants and spread to other global regions. The US EIV strains generally spread from the southern and midwestern regions to other regions. The EIV H3N8 accumulated approximately three nucleotide substitutions per year in the HA gene under heterogeneous local positive selection. Our findings will guide better decision making of target intervention strategies of EIV H3N8 infection and provide the better scheme of genomic surveillance in the United States and global equine health.


Subject(s)
Horse Diseases , Influenza A Virus, H3N8 Subtype , Influenza, Human , Orthomyxoviridae Infections , Animals , Bayes Theorem , Hemagglutinins , Horse Diseases/epidemiology , Horses , Humans , Influenza A Virus, H3N8 Subtype/genetics , Nucleotides , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Phylogeography
2.
Lancet Microbe ; 3(11): e824-e834, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2031776

ABSTRACT

BACKGROUND: The H3N8 avian influenza virus (AIV) has been circulating in wild birds, with occasional interspecies transmission to mammals. The first human infection of H3N8 subtype occurred in Henan Province, China, in April, 2022. We aimed to investigate clinical, epidemiological, and virological data related to a second case identified soon afterwards in Hunan Province, China. METHODS: We analysed clinical, epidemiological, and virological data for a 5-year-old boy diagnosed with H3N8 AIV infection in May, 2022, during influenza-like illness surveillance in Changsha City, Hunan Province, China. H3N8 virus strains from chicken flocks from January, 2021, to April, 2022, were retrospectively investigated in China. The genomes of the viruses were sequenced for phylogenetic analysis of all the eight gene segments. We evaluated the receptor-binding properties of the H3N8 viruses by using a solid-phase binding assay. We used sequence alignment and homology-modelling methods to study the effect of specific mutations on the human receptor-binding properties. We also conducted serological surveillance to detect the H3N8 infections among poultry workers in the two provinces with H3N8 cases. FINDINGS: The clinical symptoms of the patient were mild, including fever, sore throat, chills, and a runny nose. The patient's fever subsided on the same day of hospitalisation, and these symptoms disappeared 7 days later, presenting mild influenza symptoms, with no pneumonia. An H3N8 virus was isolated from the patient's throat swab specimen. The novel H3N8 virus causing human infection was first detected in a chicken farm in Guangdong Province in December, 2021, and subsequently emerged in several provinces. Sequence analyses revealed the novel H3N8 AIVs originated from multiple reassortment events. The haemagglutinin gene could have originated from H3Ny AIVs of duck origin. The neuraminidase gene belongs to North American lineage, and might have originated in Alaska (USA) and been transferred by migratory birds along the east Asian flyway. The six internal genes had originated from G57 genotype H9N2 AIVs that were endemic in chicken flocks. Reassortment events might have occurred in domestic ducks or chickens in the Pearl River Delta area in southern China. The novel H3N8 viruses possess the ability to bind to both avian-type and human-type sialic acid receptors, which pose a threat to human health. No poultry worker in our study was positive for antibodies against the H3N8 virus. INTERPRETATION: The novel H3N8 virus that caused human infection had originated from chickens, a typical spillover. The virus is a triple reassortment strain with the Eurasian avian H3 gene, North American avian N8 gene, and dynamic internal genes of the H9N2 viruses. The virus already possesses binding ability to human-type receptors, though the risk of the H3N8 virus infection in humans was low, and the cases are rare and sporadic at present. Considering the pandemic potential, comprehensive surveillance of the H3N8 virus in poultry flocks and the environment is imperative, and poultry-to-human transmission should be closely monitored. FUNDING: National Natural Science Foundation of China, National Key Research and Development Program of China, Strategic Priority Research Program of the Chinese Academy of Sciences, Hunan Provincial Innovative Construction Special Fund: Emergency response to COVID-19 outbreak, Scientific Research Fund of Hunan Provincial Health Department, and the Hunan Provincial Health Commission Foundation.


Subject(s)
COVID-19 , Influenza A Virus, H3N8 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Humans , Animals , Child, Preschool , Influenza in Birds/epidemiology , Influenza A Virus, H3N8 Subtype/genetics , Influenza, Human/epidemiology , Phylogeny , Retrospective Studies , Chickens , Poultry , Ducks , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL